Data Science meets Neuroscience: Towards a Better Understanding of the Epileptic Process

Henning Dickten^{1,2,3} and Christian Geier^{1,3}

¹Department of Epileptology, University of Bonn, Germany

December 8th, 2015

²Interdisciplinary Center for Complex Systems, University of Bonn, Germany

³Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Germany

Epilepsy

- affects over 50 million people worldwide one of the most common neurological disorders
- predisposition to epileptic seizures
- for $\approx 30\%$ of patients no adequate seizure control
 - \rightarrow strong need for novel therapies

traditional concept: epileptic focus

- circumscribed area of brain
- $lue{}$ critical amount of neurons ightarrow epileptic seizure

emerging concept: epileptic network

- dynamics in any part affects all other parts
- seizure proneness in any part influenced by dynamics in whole network

Structural brain networks

small-scale:

```
nodes \rightarrow single neurons edges \rightarrow synapses desirable, but hard (impossible?) to access
```

large-scale:

```
\begin{array}{l} \mathsf{nodes} \to \mathsf{brain} \ \mathsf{regions} \\ \mathsf{edges} \to \mathsf{fiber} \ \mathsf{bundles} \end{array}
```

high-res. magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), ...

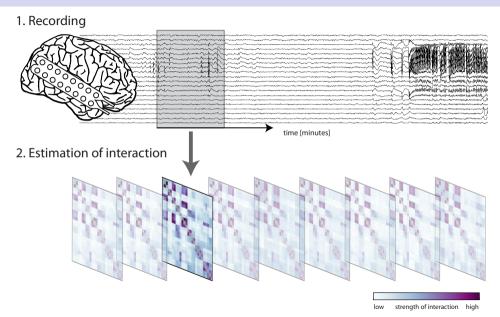
Functional brain networks

small-scale:

```
nodes \rightarrow single neuron dynamics edges \rightarrow synaptic (other) interactions emerging technologies
```

large-scale:

```
nodes \rightarrow sensors (dynamics of networks of neuron networks) edges \rightarrow interactions, time series analysis (invasive) electroencephalography (iEEG/EEG), magnetoencephalography (MEG), functional MRI (fMRI), ...
```


Inferring networks from iEEG data

- node ↔ electrode contact
- edge ↔ interaction between nodes which properties of interaction needed?
 - strength
 - direction
 - delay
 - ?

estimated with suitable measure based on

- amplitude
- phase
- state space
- information theory
- **▶** ?

Inferring networks from iEEG data

Inferring interaction properties with information theory

Strength of interaction

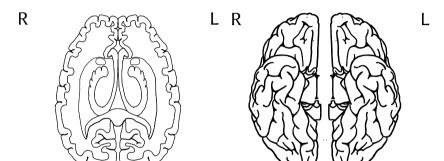
Order parameter $\gamma \in [0,1]$ with

$$\gamma := rac{1}{N_{\eta}} \sum_{n=1}^{N_{\eta}} S_X(\omega_{\eta}) S_Y(\omega_{\eta})$$

with in-step changing tendency

$$S_X(\omega_\eta) = egin{cases} +1 & ext{if } H(\omega_\eta) < H(\omega_{\eta-1}) \ -1 & ext{else}. \end{cases}$$

Direction of interaction

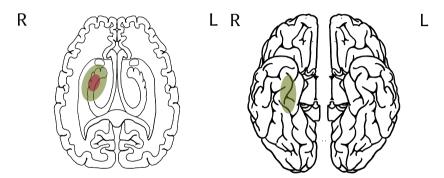

Directionality index $T\in (-\infty,\infty)$ with

$$T = T_{X \to Y} - T_{Y \to X}$$

with Symbolic Transfer Entropy

$$T_{Y \to X} = \sum_{x_i, x_{i-1}, y_{i-1}} p(x_i, x_{i-1}, y_{i-1}) \log_2 \frac{p(x_i \mid x_{i-1}, y_{i-1})}{p(x_i \mid x_{i-1})}$$

Functional modules:

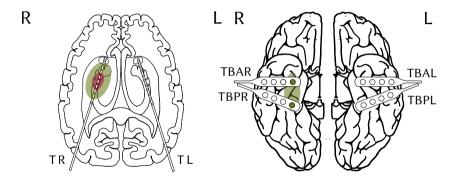


EEG Data

multi-channel invasive EEG recordings recording duration: 7.8 days number of seizure: 12

200 Hz sampling rate 0.1 Hz to 70 Hz band-pass filter 16 bit A/D Converter

Functional modules:

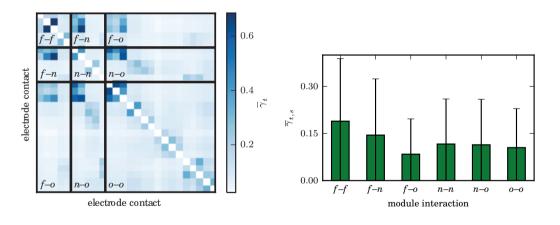


EEG Data

multi-channel invasive EEG recordings recording duration: 7.8 days number of seizure: 12

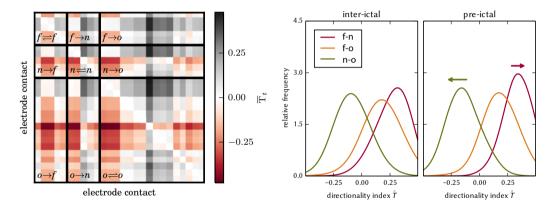
200 Hz sampling rate 0.1 Hz to 70 Hz band-pass filter 16 bit A/D Converter

Functional modules:



EEG Data

multi-channel invasive EEG recordings recording duration: 7.8 days number of seizure: 12


200 Hz sampling rate 0.1 Hz to 70 Hz band-pass filter 16 bit A/D Converter

Temporal average of strength of interactions

 \rightarrow Can we identify brain region through their interaction properties? Dickten et al. (in preparation).

Temporal average of direction of interaction

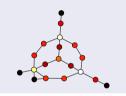
 \rightarrow Is prediction of seizures feasible?

Lehnertz and Dickten Phil. Trans. R. Soc. A (2015).

Example II

Importance of brain regions during epileptic seizures

- Which brain regions are important for epileptic seizures?
- Before, during, after the seizure?
- Is the focus most important?
- What does *important* mean for network nodes?

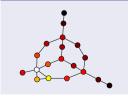

Example II

Importance of brain regions during epileptic seizures

- Which brain regions are important for epileptic seizures?
- Before, during, after the seizure?
- Is the focus most important?
- What does *important* mean for network nodes?
 - \Rightarrow concept from graph theory: *centralities*

Estimating importance of brain regions

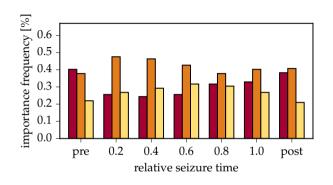
Betweenness centrality

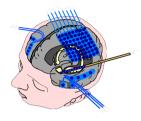


$$C^B(n) = \frac{2}{(N-1)(N-2)} \sum_{h \neq n \neq m}^{N} \frac{\eta_{hm}(n)}{\eta_{hm}},$$

- \bullet η_{hm} : number of all shortest paths between the nodes h and m
- $\eta_{hm}(n)$: number of these paths running through node n

based on concept of shortest paths between pairs of nodes


Eigenvector centrality

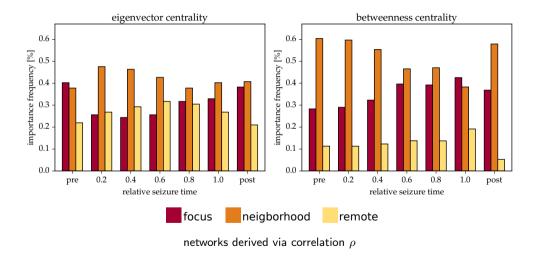


$$C^{E}(n) = v_n \text{ with } \sum_{i=1}^{n} A_{ij}v_j = \lambda_{\max}v_i$$

iterative approach: nodes are central, if they are connected with other central nodes

Which brain region is important for epileptic seizures?

Functional modules


as indicated by eigenvector centrality C^E using correlation ρ for network inference

EEG Data

82 multi-channel invasive EEG recordings from 52 patients (20 woman, 32 men) number of electrode contacts: mean 66 (range 26–124) recording duration: mean 455 s (range 112 s to 1702 s) seizure duration: mean 120.1 s (range 33.8 s to 395.8 s)

200 Hz sampling rate 0.1 Hz to 70 Hz band-pass filter 16 bit A/D Converter recording montage: unipolar

Impact of different centrality indices

Geier et al. Seizure 2015

Conclusion

Better understanding of the epileptic process?

- neighborhood of the focus important for seizure generation
- focus plays secondary role
- neighborhood steers the epileptic process?
- treatmeant and seizure control
 - resection of neighborhood?
 - modification of functional brain network?

Influencing factors

- spatial and temporal sampling, missing observations
- choice of properties of interaction
- choice of measure of interaction
-